Existence of an infinite particle limit of stochastic ranking process
Kumiko Hattori and
Tetsuya Hattori
Stochastic Processes and their Applications, 2009, vol. 119, issue 3, 966-979
Abstract:
We study a stochastic particle system which models the time evolution of the ranking of books by online bookstores (e.g., Amazon.co.jp). In this system, particles are lined in a queue. Each particle jumps at random jump times to the top of the queue, and otherwise stays in the queue, being pushed toward the tail every time another particle jumps to the top. In an infinite particle limit, the random motion of each particle between its jumps converges to a deterministic trajectory. (This trajectory is actually observed in the ranking data on web sites.) We prove that the (random) empirical distribution of this particle system converges to a deterministic space-time-dependent distribution. A core of the proof is the law of large numbers for dependent random variables.
Keywords: Stochastic; ranking; process; Hydrodynamic; limit; Dependent; random; variables; Law; of; large; numbers (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00088-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:3:p:966-979
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().