A PDE approach to large deviations in Hilbert spaces
Swie[combining cedilla]ch, Andrzej
Stochastic Processes and their Applications, 2009, vol. 119, issue 4, 1081-1123
Abstract:
We introduce a PDE approach to the large deviation principle for Hilbert space valued diffusions. It can be applied to a large class of solutions of abstract stochastic evolution equations with small noise intensities and is adaptable to some special equations, for instance to the 2D stochastic Navier-Stokes equations. Our approach uses a lot of ideas from (and in significant part follows) the program recently developed by Feng and Kurtz [J. Feng, T. Kurtz, Large Deviations for Stochastic Processes, in: Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006]. Moreover we present easy proofs of exponential moment estimates for solutions of stochastic PDE.
Keywords: Large; deviations; Viscosity; solutions; Hamilton-Jacobi-Bellman; equations; Stochastic; PDE; Stochastic; Navier-Stokes; equations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00087-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:4:p:1081-1123
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().