Linear fractional stable sheets: Wavelet expansion and sample path properties
Antoine Ayache,
François Roueff and
Yimin Xiao
Stochastic Processes and their Applications, 2009, vol. 119, issue 4, 1168-1197
Abstract:
In this paper we give a detailed description of the random wavelet series representation of real-valued linear fractional stable sheet introduced in [A. Ayache, F. Roueff, Y. Xiao, Local and asymptotic properties of linear fractional stable sheets, C.R. Acad. Sci. Paris Ser. I. 344 (6) (2007) 389-394]. By using this representation, in the case where the sample paths are continuous, an anisotropic uniform and quasi-optimal modulus of continuity of these paths is obtained as well as an upper bound for their behavior at infinity and around the coordinate axes. The Hausdorff dimensions of the range and graph of these stable random fields are then derived.
Keywords: Wavelet; analysis; Stable; processes; Linear; fractional; stable; sheet; Modulus; of; continuity; Hausdorff; dimension (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00092-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:4:p:1168-1197
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().