Forgetting the initial distribution for Hidden Markov Models
R. Douc,
G. Fort,
E. Moulines and
P. Priouret
Stochastic Processes and their Applications, 2009, vol. 119, issue 4, 1235-1256
Abstract:
The forgetting of the initial distribution for discrete Hidden Markov Models (HMM) is addressed: a new set of conditions is proposed, to establish the forgetting property of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence of the total variation distance of the filter started from two different initial distributions, and a convergence in expectation are considered. The results are illustrated using different HMM of interest: the dynamic tobit model, the nonlinear state space model and the stochastic volatility model.
Keywords: Nonlinear; filtering; Hidden; Markov; models; Asymptotic; stability; Total; variation; norm (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00104-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:4:p:1235-1256
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().