EconPapers    
Economics at your fingertips  
 

Smooth densities for solutions to stochastic differential equations with jumps

Thomas Cass

Stochastic Processes and their Applications, 2009, vol. 119, issue 5, 1416-1435

Abstract: We consider a solution xt to a generic Markovian jump diffusion and show that for any t0>0 the law of xt0 has a C[infinity] density with respect to the Lebesgue measure under a uniform version of the Hörmander conditions. Unlike previous results in the area the result covers a class of infinite activity jump processes. The result is accomplished using carefully crafted refinements to the classical arguments used in proving the smoothness of density via Malliavin calculus. In particular, we provide a proof that the semimartingale inequality of J. Norris persists for discontinuous semimartingales when the jumps are small.

Keywords: Jump; diffusions; Malliavin; calculus; Semimartingales (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00119-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:5:p:1416-1435

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:5:p:1416-1435