EconPapers    
Economics at your fingertips  
 

Impulse control problem on finite horizon with execution delay

Benjamin Bruder and Huyên Pham

Stochastic Processes and their Applications, 2009, vol. 119, issue 5, 1436-1469

Abstract: We consider impulse control problems in finite horizon for diffusions with decision lag and execution delay. The new feature is that our general framework deals with the important case when several consecutive orders may be decided before the effective execution of the first one. This is motivated by financial applications in the trading of illiquid assets such as hedge funds. We show that the value functions for such control problems satisfy a suitable version of dynamic programming principle in finite dimension, which takes into account the past dependence of state process through the pending orders. The corresponding Bellman partial differential equations (PDE) system is derived, and exhibit some peculiarities on the coupled equations, domains and boundary conditions. We prove a unique characterization of the value functions to this nonstandard PDE system by means of viscosity solutions. We then provide an algorithm to find the value functions and the optimal control. This easily implementable algorithm involves backward and forward iterations on the domains and the value functions, which appear in turn as original arguments in the proofs for the boundary conditions and uniqueness results.

Keywords: Impulse; control; Execution; delay; Diffusion; processes; Dynamic; programming; Viscosity; solutions; Comparison; principle (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00120-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:5:p:1436-1469

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:5:p:1436-1469