The fractional stochastic heat equation on the circle: Time regularity and potential theory
Eulalia Nualart and
Frederi Viens
Stochastic Processes and their Applications, 2009, vol. 119, issue 5, 1505-1540
Abstract:
We consider a system of d linear stochastic heat equations driven by an additive infinite-dimensional fractional Brownian noise on the unit circle S1. We obtain sharp results on the Hölder continuity in time of the paths of the solution . We then establish upper and lower bounds on hitting probabilities of u, in terms of the Hausdorff measure and Newtonian capacity respectively.
Keywords: Hitting; probabilities; Stochastic; heat; equation; Fractional; Brownian; motion; Path; regularity (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00123-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:5:p:1505-1540
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().