Gaussian approximation of the empirical process under random entropy conditions
Adel Settati
Stochastic Processes and their Applications, 2009, vol. 119, issue 5, 1541-1560
Abstract:
We obtain rates of strong approximation of the empirical process indexed by functions by a Brownian bridge under only random entropy conditions. The results of Berthet and Mason [P. Berthet, D.M. Mason, Revisiting two strong approximation results of Dudley and Philipp, in: High Dimensional Probability, in: IMS Lecture Notes-Monograph Series, vol. 51, 2006, pp. 155-172] under bracketing entropy are extended by combining their method to properties of the empirical entropy. Our results show that one can improve the universal rate from Dudley and Philipp [R.M. Dudley, W. Philipp, Invariance principles for sums of Banach space valued random elements and empirical processes, Z. Wahrsch. Verw. Gebiete 62 (1983) 509-552] into vn-->0 at a logarithmic rate, under a weak random entropy assumption which is close to necessary. As an application the results of Koltchinskii [V.I. Kolchinskii, Komlós-Major-Tusnády approximation for the general empirical process and Haar expansions of classes of functions, J. Theoret. Probab. 7 (1994) 73-118] are revisited when the conditions coming in addition to random entropy are relaxed.
Keywords: Empirical; processes; Strong; invariance; principle; Random; entropy (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00124-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:5:p:1541-1560
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().