Stochastic integration for Lévy processes with values in Banach spaces
Markus Riedle and
Onno van Gaans
Stochastic Processes and their Applications, 2009, vol. 119, issue 6, 1952-1974
Abstract:
A stochastic integral of Banach space valued deterministic functions with respect to Banach space valued Lévy processes is defined. There are no conditions on the Banach spaces or on the Lévy processes. The integral is defined analogously to the Pettis integral. The integrability of a function is characterized by means of a radonifying property of an integral operator associated with the integrand. The integral is used to prove a Lévy-Itô decomposition for Banach space valued Lévy processes and to study existence and uniqueness of solutions of stochastic Cauchy problems driven by Lévy processes.
Keywords: Banach; space; valued; stochastic; integral; Cauchy; problem; Lévy-Ito; decomposition; Lévy; process; Martingale; valued; measure; Pettis; integral; Radonifying; operator (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00153-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:6:p:1952-1974
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().