EconPapers    
Economics at your fingertips  
 

Limit theorems for individual-based models in economics and finance

Daniel Remenik

Stochastic Processes and their Applications, 2009, vol. 119, issue 8, 2401-2435

Abstract: There is a widespread recent interest in using ideas from statistical physics to model certain types of problems in economics and finance. The main idea is to derive the macroscopic behavior of the market from the random local interactions between agents. Our purpose is to present a general framework that encompasses a broad range of models, by proving a law of large numbers and a central limit theorem for certain interacting particle systems with very general state spaces. To do this we draw inspiration from some work done in mathematical ecology and mathematical physics. The first result is proved for the system seen as a measure-valued process, while to prove the second one we will need to introduce a chain of embeddings of some abstract Banach and Hilbert spaces of test functions and prove that the fluctuations converge to the solution of a certain generalized Gaussian stochastic differential equation taking values in the dual of one of these spaces.

Keywords: Individual-based; model; Interacting; particle; system; Law; of; large; numbers; Central; limit; theorem; Fluctuation; process; Measure-valued; process; Finance; Economics (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00187-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:8:p:2401-2435

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2401-2435