Surviving particles for subcritical branching processes in random environment
Vincent Bansaye
Stochastic Processes and their Applications, 2009, vol. 119, issue 8, 2436-2464
Abstract:
The asymptotic behavior of a subcritical Branching Process in Random Environment (BPRE) starting with several particles depends on whether the BPRE is strongly subcritical (SS), intermediate subcritical (IS) or weakly subcritical (WS). In the (SS+IS) case, the asymptotic probability of survival is proportional to the initial number of particles, and conditionally on the survival of the population, only one initial particle survives a.s. These two properties do not hold in the (WS) case and different asymptotics are established, which require new results on random walks with negative drift. We provide an interpretation of these results by characterizing the sequence of environments selected when we condition on the survival of particles. This also raises the problem of the dependence of the Yaglom quasistationary distributions on the initial number of particles and the asymptotic behavior of the Q-process associated with a subcritical BPRE.
Keywords: Branching; process; in; random; environment; (BPRE); Yaglom; distribution; Q-process; Random; walk; with; negative; drift (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00189-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:8:p:2436-2464
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().