Representations of the optimal filter in the context of nonlinear filtering of random fields with fractional noise
Matthew Linn and
Anna Amirdjanova
Stochastic Processes and their Applications, 2009, vol. 119, issue 8, 2481-2500
Abstract:
The problem of nonlinear filtering of multiparameter random fields, observed in the presence of a long-range dependent spatial noise, is considered. When the observation noise is modelled by a persistent fractional Wiener sheet, several pathwise representations of the optimal filter are derived. The representations involve series of multiple stochastic integrals of different types and are particularly important since the evolution equations, satisfied by the best mean-square estimate of the signal random field, have a complicated analytical structure and fail to be proper (measure-valued) stochastic partial differential equations. Several of the above optimal filter representations involve a new family of strong martingale transforms associated to the multiparameter fractional Brownian sheet; the latter martingale family is of independent interest in fractional stochastic calculus of multiparameter random fields.
Keywords: Gaussian; random; field; Multiparameter; martingale; Nonlinear; filtering; Fractional; Wiener; sheet; Multiple; stochastic; integral (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00002-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:8:p:2481-2500
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().