Weighted branching and a pathwise renewal equation
Matthias Meiners
Stochastic Processes and their Applications, 2009, vol. 119, issue 8, 2579-2597
Abstract:
This paper is devoted to the study of a pathwise renewal equation for stochastic processes which are functions of a weighted tree defined in a general weighted branching model. Motivated by applications in the analysis of certain stochastic fixed-point equations and in the theory of general (Crump-Mode-Jagers) branching processes, we analyze the solutions to the equation under several conditions, the main result being a characterization of the set of solutions satisfying appropriate integrability conditions.
Keywords: Weighted; branching; process; Branching; random; walk; General; branching; process; Renewal; equation; Pathwise; renewal; equation; Martingale (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00016-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:8:p:2579-2597
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().