EconPapers    
Economics at your fingertips  
 

Conformal covariance of the Abelian sandpile height one field

Maximilian Dürre

Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2725-2743

Abstract: We study the scaling limit for the height one field of the two-dimensional Abelian sandpile model. The scaling limit for the covariance having height one at two macroscopically distant sites, more generally the centred height one joint moment of a finite number of macroscopically distant sites, is identified and shown to be conformally covariant. The result is based on a representation of the height one joint intensities that is close to a block-determinantal structure.

Keywords: Abelian; sandpile; model; Scaling; limit; Determinantal; process; Conformal; covariance (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00031-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2725-2743

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:9:p:2725-2743