Conformal covariance of the Abelian sandpile height one field
Maximilian Dürre
Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2725-2743
Abstract:
We study the scaling limit for the height one field of the two-dimensional Abelian sandpile model. The scaling limit for the covariance having height one at two macroscopically distant sites, more generally the centred height one joint moment of a finite number of macroscopically distant sites, is identified and shown to be conformally covariant. The result is based on a representation of the height one joint intensities that is close to a block-determinantal structure.
Keywords: Abelian; sandpile; model; Scaling; limit; Determinantal; process; Conformal; covariance (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00031-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2725-2743
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().