On measure solutions of backward stochastic differential equations
Stefan Ankirchner,
Peter Imkeller and
Alexandre Popier
Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2744-2772
Abstract:
We consider backward stochastic differential equations (BSDEs) with nonlinear generators typically of quadratic growth in the control variable. A measure solution of such a BSDE will be understood as a probability measure under which the generator is seen as vanishing, so that the classical solution can be reconstructed by a combination of the operations of conditioning and using martingale representations. For the case where the terminal condition is bounded and the generator fulfills the usual continuity and boundedness conditions, we show that measure solutions with equivalent measures just reinterpret classical ones. For the case of terminal conditions that have only exponentially bounded moments, we discuss a series of examples which show that in the case of non-uniqueness, classical solutions that fail to be measure solutions can coexist with different measure solutions.
Keywords: Backward; stochastic; differential; equation; Stochastic; control; Hedging; of; contingent; claim; Martingale; measure; Martingale; representation; Girsanov's; theorem; Weak; solution; Measure; solution; Brownian; motion (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00032-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2744-2772
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().