EconPapers    
Economics at your fingertips  
 

On measure solutions of backward stochastic differential equations

Stefan Ankirchner, Peter Imkeller and Alexandre Popier

Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2744-2772

Abstract: We consider backward stochastic differential equations (BSDEs) with nonlinear generators typically of quadratic growth in the control variable. A measure solution of such a BSDE will be understood as a probability measure under which the generator is seen as vanishing, so that the classical solution can be reconstructed by a combination of the operations of conditioning and using martingale representations. For the case where the terminal condition is bounded and the generator fulfills the usual continuity and boundedness conditions, we show that measure solutions with equivalent measures just reinterpret classical ones. For the case of terminal conditions that have only exponentially bounded moments, we discuss a series of examples which show that in the case of non-uniqueness, classical solutions that fail to be measure solutions can coexist with different measure solutions.

Keywords: Backward; stochastic; differential; equation; Stochastic; control; Hedging; of; contingent; claim; Martingale; measure; Martingale; representation; Girsanov's; theorem; Weak; solution; Measure; solution; Brownian; motion (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00032-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2744-2772

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:9:p:2744-2772