Anticipating stochastic differential systems with memory
Salah Mohammed and
Tusheng Zhang
Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2773-2802
Abstract:
This article establishes existence and uniqueness of solutions to two classes of stochastic systems with finite memory subject to anticipating initial conditions which are sufficiently smooth in the Malliavin sense. The two classes are semilinear stochastic functional differential equations (sfdes) and fully nonlinear sfdes with a sublinear drift term. For the semilinear case, we use Malliavin calculus techniques, existence of the stochastic semiflow and an infinite-dimensional substitution theorem. For the fully nonlinear case, we employ an anticipating version of the Itô-Ventzell formula due to Ocone and Pardoux [D. Ocone, E. Pardoux, A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations, Annales de l'Institut Henri Poincaré. Probabilité s et Statistiques 25 (1) (1989) 39-71]. In both cases, the use of Malliavin calculus techniques is necessitated by the infinite dimensionality of the initial condition.
Keywords: Malliavin; calculus; Stochastic; semiflow; Perfect; cocycle; Anticipating; initial; condition; Substitution; theorem; Stochastic; differential; systems; with; memory; Stochastic; functional; differential; equation; (sfde) (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00034-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2773-2802
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().