EconPapers    
Economics at your fingertips  
 

Bipower-type estimation in a noisy diffusion setting

Mark Podolskij () and Mathias Vetter

Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2803-2831

Abstract: We consider a new class of estimators for volatility functionals in the setting of frequently observed Ito diffusions which are disturbed by i.i.d. noise. These statistics extend the approach of pre-averaging as a general method for the estimation of the integrated volatility in the presence of microstructure noise and are closely related to the original concept of bipower variation in the no-noise case. We show that this approach provides efficient estimators for a large class of integrated powers of volatility and prove the associated (stable) central limit theorems. In a more general Ito semimartingale framework this method can be used to define both estimators for the entire quadratic variation of the underlying process and jump-robust estimators which are consistent for various functionals of volatility. As a by-product we obtain a simple test for the presence of jumps in the underlying semimartingale.

Keywords: Bipower; variation; Central; limit; theorem; High-frequency; data; Microstructure; noise; Quadratic; variation; Semimartingale; theory; Test; for; jumps (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00036-2
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Bipower-type estimation in a noisy diffusion setting (2008) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2803-2831

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:9:p:2803-2831