On exponential local martingales associated with strong Markov continuous local martingales
Stefan Blei and
Hans-Jürgen Engelbert
Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2859-2880
Abstract:
We investigate integral functionals , t>=0, where m is a nonnegative measure on and LY is the local time of a Wiener process with drift, i.e., Yt=Wt+t, t>=0, with a standard Wiener process W. We give conditions for a.s. convergence and divergence of Tt, t>=0, and T[infinity]. In the second part of the present note we apply these results to exponential local martingales associated with strong Markov continuous local martingales. In terms of the speed measure of a strong Markov continuous local martingale, we state a necessary and sufficient condition for the exponential local martingale associated with a strong Markov continuous local martingale to be a martingale.
Keywords: Continuous; local; martingales; Continuous; strong; Markov; processes; Stochastic; differential; equations; Brownian; motion; Brownian; motion; with; drift; Integral; functionals; 0-1-laws; Continuous; exponential; local; martingales; Stochastic; exponentials; Martingale; property; of; stochastic; exponentials (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00057-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2859-2880
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().