Heterogeneous credit portfolios and the dynamics of the aggregate losses
Paolo Dai Pra and
Marco Tolotti
Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 2913-2944
Abstract:
We study the impact of contagion in a network of firms facing credit risk. We describe an intensity based model where the homogeneity assumption is broken by introducing a random environment that makes it possible to take into account the idiosyncratic characteristics of the firms. We shall see that our model goes behind the identification of groups of firms that can be considered basically exchangeable. Despite this heterogeneity assumption our model has the advantage of being totally tractable. The aim is to quantify the losses that a bank may suffer in a large credit portfolio. Relying on a large deviation principle on the trajectory space of the process, we state a suitable law of large numbers and a central limit theorem useful for studying large portfolio losses. Simulation results are provided as well as applications to portfolio loss distribution analysis.
Keywords: Central; limit; theorems; in; Banach; spaces; Credit; contagion; Intensity; based; models; Large; deviations; Large; portfolio; losses; Random; environment (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00059-3
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Heterogeneous credit portfolios and the dynamics of the aggregate losses (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:2913-2944
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().