Central limit theorems for arrays of decimated linear processes
F. Roueff and
M.S. Taqqu
Stochastic Processes and their Applications, 2009, vol. 119, issue 9, 3006-3041
Abstract:
Linear processes are defined as a discrete-time convolution between a kernel and an infinite sequence of i.i.d. random variables. We modify this convolution by introducing decimation, that is, by stretching time accordingly. We then establish central limit theorems for arrays of squares of such decimated processes. These theorems are used to obtain the asymptotic behavior of estimators of the spectral density at specific frequencies. Another application, treated elsewhere, concerns the estimation of the long-memory parameter in time series, using wavelets.
Keywords: Spectral; analysis; Wavelet; analysis; Long; range; dependence; Semiparametric; estimation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00073-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:9:p:3006-3041
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().