EconPapers    
Economics at your fingertips  
 

Ergodic theorems for extended real-valued random variables

Christian Hess, Raffaello Seri and Christine Choirat

Stochastic Processes and their Applications, 2010, vol. 120, issue 10, 1908-1919

Abstract: We first establish a general version of the Birkhoff Ergodic Theorem for quasi-integrable extended real-valued random variables without assuming ergodicity. The key argument involves the Poincaré Recurrence Theorem. Our extension of the Birkhoff Ergodic Theorem is also shown to hold for asymptotic mean stationary sequences. This is formulated in terms of necessary and sufficient conditions. In particular, we examine the case where the probability space is endowed with a metric and we discuss the validity of the Birkhoff Ergodic Theorem for continuous random variables. The interest of our results is illustrated by an application to the convergence of statistical transforms, such as the moment generating function or the characteristic function, to their theoretical counterparts.

Keywords: Birkhoff's; Ergodic; Theorem; Asymptotic; mean; stationarity; Extended; real-valued; random; variables; Non-integrable; random; variables; Cesaro; convergence; Conditional; expectation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00131-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:10:p:1908-1919

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:1908-1919