Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent
M. Möhle
Stochastic Processes and their Applications, 2010, vol. 120, issue 11, 2159-2173
Abstract:
The class of coalescent processes with simultaneous multiple collisions ([Xi]-coalescents) without proper frequencies is considered. We study the asymptotic behavior of the external branch length, the total branch length and the number of mutations on the genealogical tree as the sample size n tends to infinity. The limiting random variables arising are characterized via exponential integrals of the subordinator associated with the frequency of singletons of the coalescent. The proofs are based on decompositions into external and internal branches. The asymptotics of the external branches is treated via the method of moments. The internal branches do not contribute to the limiting variables since the number Cn of collisions for coalescents without proper frequencies is asymptotically negligible compared to n. The results are applied to the two-parameter Poisson-Dirichlet coalescent indicating that this particular class of coalescent processes in many respects behaves approximately as the star-shaped coalescent.
Keywords: Coalescent; External; branch; length; Recursion; with; random; indices; Simultaneous; multiple; collisions; Total; branch; length; Two-parameter; Poisson-Dirichlet; coalescent (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00174-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:11:p:2159-2173
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().