Kernel estimation for time series: An asymptotic theory
Wei Biao Wu,
Yinxiao Huang and
Yibi Huang
Stochastic Processes and their Applications, 2010, vol. 120, issue 12, 2412-2431
Abstract:
We consider kernel density and regression estimation for a wide class of nonlinear time series models. Asymptotic normality and uniform rates of convergence of kernel estimators are established under mild regularity conditions. Our theory is developed under the new framework of predictive dependence measures which are directly based on the data-generating mechanisms of the underlying processes. The imposed conditions are different from the classical strong mixing conditions and they are related to the sensitivity measure in the prediction theory of nonlinear time series.
Keywords: Kernel; estimation; Nonlinear; time; series; Regression; Central; limit; theorem; Martingale; Markov; chains; Linear; processes; Sensitivity; measure; Prediction; theory; Mean; concentration; function; Fejer; kernel (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00187-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:12:p:2412-2431
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().