EconPapers    
Economics at your fingertips  
 

The stochastic wave equation with fractional noise: A random field approach

Raluca M. Balan and Ciprian A. Tudor

Stochastic Processes and their Applications, 2010, vol. 120, issue 12, 2468-2494

Abstract: We consider the linear stochastic wave equation with spatially homogeneous Gaussian noise, which is fractional in time with index H>1/2. We show that the necessary and sufficient condition for the existence of the solution is a relaxation of the condition obtained in Dalang (1999) [10], where the noise is white in time. Under this condition, we show that the solution is L2([Omega])-continuous. Similar results are obtained for the heat equation. Unlike in the white noise case, the necessary and sufficient condition for the existence of the solution in the case of the heat equation is different (and more general) than the one obtained for the wave equation.

Keywords: Stochastic; wave; equation; Random; field; solution; Spatially; homogeneous; Gaussian; noise; Fractional; Brownian; motion (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00192-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:12:p:2468-2494

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2468-2494