Detection of cellular aging in a Galton-Watson process
Jean-François Delmas and
Laurence Marsalle
Stochastic Processes and their Applications, 2010, vol. 120, issue 12, 2495-2519
Abstract:
We consider the bifurcating Markov chain model introduced by Guyon to detect cellular aging from cell lineage. To take into account the possibility for a cell to die, we use an underlying super-critical binary Galton-Watson process to describe the evolution of the cell lineage. We give in this more general framework a weak law of large number, an invariance principle and thus fluctuation results for the average over all individuals in a given generation, or up to a given generation. We also prove that the fluctuations over each generation are independent. Then we present the natural modifications of the tests given by Guyon in cellular aging detection within the particular case of the auto-regressive model.
Keywords: Aging; Galton-Watson; process; Bifurcating; Markov; process; Stable; convergence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00172-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:12:p:2495-2519
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().