EconPapers    
Economics at your fingertips  
 

Limit theorems for bipower variation of semimartingales

Mathias Vetter

Stochastic Processes and their Applications, 2010, vol. 120, issue 1, 22-38

Abstract: This paper presents limit theorems for certain functionals of semimartingales observed at high frequency. In particular, we extend results from Jacod (2008) [5] to the case of bipower variation, showing under standard assumptions that one obtains a limiting variable, which is in general different from the case of a continuous semimartingale. In a second step a truncated version of bipower variation is constructed, which has a similar asymptotic behaviour as standard bipower variation for a continuous semimartingale and thus provides a feasible central limit theorem for the estimation of the integrated volatility even when the semimartingale exhibits jumps.

Keywords: Bipower; variation; Central; limit; theorem; High-frequency; observations; Semimartingale; Stable; convergence (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00180-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:1:p:22-38

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:120:y:2010:i:1:p:22-38