Stopped diffusion processes: Boundary corrections and overshoot
Emmanuel Gobet and
Stephane Menozzi
Stochastic Processes and their Applications, 2010, vol. 120, issue 2, 130-162
Abstract:
For a stopped diffusion process in a multidimensional time-dependent domain , we propose and analyse a new procedure consisting in simulating the process with an Euler scheme with step size [Delta] and stopping it at discrete times in a modified domain, whose boundary has been appropriately shifted. The shift is locally in the direction of the inward normal n(t,x) at any point (t,x) on the parabolic boundary of , and its amplitude is equal to where [sigma] stands for the diffusion coefficient of the process. The procedure is thus extremely easy to use. In addition, we prove that the rate of convergence w.r.t. [Delta] for the associated weak error is higher than without shifting, generalizing the previous results by Broadie et al. (1997) [6] obtained for the one-dimensional Brownian motion. For this, we establish in full generality the asymptotics of the triplet exit time/exit position/overshoot for the discretely stopped Euler scheme. Here, the overshoot means the distance to the boundary of the process when it exits the domain. Numerical experiments support these results.
Keywords: Stopped; diffusion; Time-dependent; domain; Brownian; overshoot; Boundary; sensitivity (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00165-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:2:p:130-162
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().