EconPapers    
Economics at your fingertips  
 

Ergodic properties of max-infinitely divisible processes

Zakhar Kabluchko and Martin Schlather

Stochastic Processes and their Applications, 2010, vol. 120, issue 3, 281-295

Abstract: We prove that a stationary max-infinitely divisible process is mixing (ergodic) iff its dependence function converges to 0 (is Cesàro summable to 0). These criteria are applied to some classes of max-infinitely divisible processes.

Keywords: Max-infinitely; divisible; processes; Max-stable; processes; Ergodicity; Mixing; Codifference (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00229-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:3:p:281-295

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:120:y:2010:i:3:p:281-295