Itô's stochastic calculus and Heisenberg commutation relations
Philippe Biane
Stochastic Processes and their Applications, 2010, vol. 120, issue 5, 698-720
Abstract:
Stochastic calculus and stochastic differential equations for Brownian motion were introduced by K. Itô in order to give a pathwise construction of diffusion processes. This calculus has deep connections with objects such as the Fock space and the Heisenberg canonical commutation relations, which have a central role in quantum physics. We review these connections, and give a brief introduction to the noncommutative extension of Itô's stochastic integration due to Hudson and Parthasarathy. Then we apply this scheme to show how finite Markov chains can be constructed by solving stochastic differential equations, similar to diffusion equations, on the Fock space.
Keywords: Stochastic; integrals; Diffusion; processes; Heisenberg; commutation; relations (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00025-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:5:p:698-720
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().