An extension of a logarithmic form of Cramér's ruin theorem to some FARIMA and related processes
Ph. Barbe and
W.P. McCormick
Stochastic Processes and their Applications, 2010, vol. 120, issue 6, 801-828
Abstract:
Cramér's theorem provides an estimate for the tail probability of the maximum of a random walk with negative drift and increments having a moment generating function finite in a neighborhood of the origin. The class of (g,F)-processes generalizes in a natural way random walks and fractional ARIMA models used in time series analysis. For those (g,F)-processes with negative drift, we obtain a logarithmic estimate of the tail probability of their maximum, under conditions comparable to Cramér's. Furthermore, we exhibit the most likely paths as well as the most likely behavior of the innovations leading to a large maximum.
Keywords: Maximum; of; random; walk; Cramer's; theorem; Fractional; ARIMA; process; Ruin; probability; Large; deviations (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00029-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:6:p:801-828
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().