Asymptotic results for the two-parameter Poisson-Dirichlet distribution
Shui Feng and
Fuqing Gao
Stochastic Processes and their Applications, 2010, vol. 120, issue 7, 1159-1177
Abstract:
The two-parameter Poisson-Dirichlet distribution is the law of a sequence of decreasing nonnegative random variables with total sum one. It can be constructed from stable and gamma subordinators with the two parameters, [alpha] and [theta], corresponding to the stable component and the gamma component respectively. The moderate deviation principle is established for the distribution when [theta] approaches infinity, and the large deviation principle is established when both [alpha] and [theta] approach zero.
Keywords: Poisson-Dirichlet; distribution; Two-parameter; Poisson-Dirichlet; distribution; GEM; representation; Homozygosity; Large; deviations; Moderate; deviations (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00077-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:7:p:1159-1177
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().