Non-uniqueness of stationary measures for self-stabilizing processes
S. Herrmann and
J. Tugaut
Stochastic Processes and their Applications, 2010, vol. 120, issue 7, 1215-1246
Abstract:
We investigate the existence of invariant measures for self-stabilizing diffusions. These stochastic processes represent roughly the behavior of some Brownian particle moving in a double-well landscape and attracted by its own law. This specific self-interaction leads to nonlinear stochastic differential equations and permits pointing out singular phenomena like non-uniqueness of associated stationary measures. The existence of several invariant measures is essentially based on the non-convex environment and requires generalized Laplace's method approximations.
Keywords: Self-interacting; diffusion; Stationary; measures; Double-well; potential; Perturbed; dynamical; system; Laplace's; method; Fixed; point; theorem; McKean-Vlasov; stochastic; differential; equations (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00078-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:7:p:1215-1246
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().