Central limit theorems for multicolor urns with dominated colors
Patrizia Berti,
Irene Crimaldi,
Luca Pratelli and
Pietro Rigo
Stochastic Processes and their Applications, 2010, vol. 120, issue 8, 1473-1491
Abstract:
An urn contains balls of d>=2 colors. At each time n>=1, a ball is drawn and then replaced together with a random number of balls of the same color. Let diag (An,1,...,An,d) be the n-th reinforce matrix. Assuming that EAn,j=EAn,1 for all n and j, a few central limit theorems (CLTs) are available for such urns. In real problems, however, it is more reasonable to assume that for some integer 1
Keywords: Central; limit; theorem; Clinical; trials; Random; probability; measure; Stable; convergence; Urn; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00110-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:8:p:1473-1491
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().