Periodic homogenization with an interface: The one-dimensional case
Martin Hairer and
Charles Manson
Stochastic Processes and their Applications, 2010, vol. 120, issue 8, 1589-1605
Abstract:
We consider a one-dimensional diffusion process with coefficients that are periodic outside of a finite 'interface region'. The question investigated in this article is the limiting long time/large scale behaviour of such a process under diffusive rescaling. Our main result is that it converges weakly to a rescaled version of skew Brownian motion, with parameters that can be given explicitly in terms of the coefficients of the original diffusion. Our method of proof relies on the framework provided by Freidlin and Wentzell (1993) [6] for diffusion processes on a graph in order to identify the generator of the limiting process. The graph in question consists of one vertex representing the interface region and two infinite segments corresponding to the regions on either side.
Keywords: Homogenization; Interface; Skew; Brownian; motion; Martingale; problem (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00094-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:8:p:1589-1605
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().