EconPapers    
Economics at your fingertips  
 

Continuity in the Hurst parameter of the law of the symmetric integral with respect to the fractional Brownian motion

Maria Jolis and Noèlia Viles

Stochastic Processes and their Applications, 2010, vol. 120, issue 9, 1651-1679

Abstract: We prove the convergence in law, in the space of continuous functions , of the Russo-Vallois symmetric integral of a non-adapted process with respect to the fractional Brownian motion with Hurst parameter H>1/2 to the Russo-Vallois symmetric integral with respect to the fractional Brownian motion with parameter H0, when H tends to H0[set membership, variant][1/2,1).

Keywords: Convergence; in; law; Fractional; Brownian; motion; Russo-Vallois; symmetric; integral (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00124-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:9:p:1651-1679

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1651-1679