Almost sure asymptotics for the local time of a diffusion in Brownian environment
Roland Diel
Stochastic Processes and their Applications, 2011, vol. 121, issue 10, 2303-2330
Abstract:
Here, we study the asymptotic behavior of the maximum local time of the diffusion in Brownian environment. Shi (1998) [17] proved that, surprisingly, the maximum speed of is at least tlog(log(logt)); whereas in the discrete case, it is t. We show that tlog(log(logt)) is the proper rate and that for the minimum speed the rate is the same as in the discrete case (see Dembo et al. (2007) [6]) namely t/log(log(logt)). We also prove a localization result: almost surely for large time, the diffusion has spent almost all the time in the neighborhood of four points which only depend on the environment.
Keywords: Diffusion; in; Brownian; environment; Local; time (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911001384
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:10:p:2303-2330
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().