A non-ergodic probabilistic cellular automaton with a unique invariant measure
Philippe Chassaing and
Jean Mairesse
Stochastic Processes and their Applications, 2011, vol. 121, issue 11, 2474-2487
Abstract:
We exhibit a Probabilistic Cellular Automaton (PCA) on { 0 , 1 } Z with a neighborhood of size 2 which is non-ergodic although it has a unique invariant measure. This answers by the negative an old open question on whether uniqueness of the invariant measure implies ergodicity for a PCA.
Keywords: Probabilistic; cellular; automaton; Interacting; particle; system; Ergodicity (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911001566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:11:p:2474-2487
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().