Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems
Carles Bretó and
Edward L. Ionides
Stochastic Processes and their Applications, 2011, vol. 121, issue 11, 2571-2591
Abstract:
We propose an infinitesimal dispersion index for Markov counting processes. We show that, under standard moment existence conditions, a process is infinitesimally (over-)equi-dispersed if, and only if, it is simple (compound), i.e. it increases in jumps of one (or more) unit(s), even though infinitesimally equi-dispersed processes might be under-, equi- or over-dispersed using previously studied indices. Compound processes arise, for example, when introducing continuous-time white noise to the rates of simple processes resulting in Lévy-driven SDEs. We construct multivariate infinitesimally over-dispersed compartment models and queuing networks, suitable for applications where moment constraints inherent to simple processes do not hold.
Keywords: Continuous; time; Counting; Markov; process; Birth-death; process; Environmental; stochasticity; Infinitesimal; over-dispersion; Simultaneous; events (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911001761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:11:p:2571-2591
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().