Rearrangements of Gaussian fields
Raphaël Lachióze-Rey and
Youri Davydov
Stochastic Processes and their Applications, 2011, vol. 121, issue 11, 2606-2628
Abstract:
The monotone rearrangement of a function is the non-decreasing function with the same distribution. The convex rearrangement of a smooth function is obtained by integrating the monotone rearrangement of its derivative. This operator can be applied to regularizations of a stochastic process to measure quantities of interest in econometrics. A multivariate generalization of these operators is proposed, and the almost sure convergence of rearrangements of regularized Gaussian fields is given. For the fractional Brownian field or the Brownian sheet approximated on a simplicial grid, it appears that the limit object depends on the orientation of the simplices.
Keywords: Random; fields; Rearrangement; Limit; theorems; Random; measures (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911001633
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:11:p:2606-2628
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().