Multi-operator scaling random fields
Hermine Biermé,
Céline Lacaux and
Hans-Peter Scheffler
Stochastic Processes and their Applications, 2011, vol. 121, issue 11, 2642-2677
Abstract:
In this paper, we define and study a new class of random fields called harmonizable multi-operator scaling stable random fields. These fields satisfy a local asymptotic operator scaling property which generalizes both the local asymptotic self-similarity property and the operator scaling property. Actually, they locally look like operator scaling random fields, whose order is allowed to vary along the sample paths. We also give an upper bound of their modulus of continuity. Their pointwise Hölder exponents may also vary with the position x and their anisotropic behavior is driven by a matrix which may also depend on x .
Keywords: Gaussian; and; stable; random; fields; Local; operator; scaling; property; Holder; regularity (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491100161X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:11:p:2642-2677
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().