On the stability and ergodicity of adaptive scaling Metropolis algorithms
Matti Vihola
Stochastic Processes and their Applications, 2011, vol. 121, issue 12, 2839-2860
Abstract:
The stability and ergodicity properties of two adaptive random walk Metropolis algorithms are considered. Both algorithms adjust the scaling of the proposal distribution continuously based on the observed acceptance probability. Unlike the previously proposed forms of the algorithms, the adapted scaling parameter is not constrained within a predefined compact interval. The first algorithm is based on scale adaptation only, while the second one also incorporates covariance adaptation. A strong law of large numbers is shown to hold assuming that the target density is smooth enough and has either compact support or super-exponentially decaying tails.
Keywords: Adaptive Markov chain Monte Carlo; Law of large numbers; Metropolis algorithm; Stability; Stochastic approximation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491100189X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:12:p:2839-2860
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2011.08.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().