Stability of Feynman-Kac formulae with path-dependent potentials
Nicolas Chopin,
P. Del Moral and
S. Rubenthaler
Stochastic Processes and their Applications, 2011, vol. 121, issue 1, 38-60
Abstract:
Several particle algorithms admit a Feynman-Kac representation such that the potential function may be expressed as a recursive function which depends on the complete state trajectory. An important example is the mixture Kalman filter, but other models and algorithms of practical interest fall in this category. We study the asymptotic stability of such particle algorithms as time goes to infinity. As a corollary, practical conditions for the stability of the mixture Kalman filter, and a mixture GARCH filter, are derived. Finally, we show that our results can also lead to weaker conditions for the stability of standard particle algorithms for which the potential function depends on the last state only.
Keywords: Feynman-Kac; formulae; Mixture; Kalman; filter; Particle; filter; Nonlinear; filter (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00221-8
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Stability of Feynman-Kac Formulae with Path-dependent Potentials (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:1:p:38-60
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().