EconPapers    
Economics at your fingertips  
 

On the limit law of a random walk conditioned to reach a high level

Sergey G. Foss and Anatolii A. Puhalskii

Stochastic Processes and their Applications, 2011, vol. 121, issue 2, 288-313

Abstract: We consider a random walk with a negative drift and with a jump distribution which under Cramér's change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this random walk converges in law to a nondecreasing Markov process which can be interpreted as a spectrally positive Lévy process conditioned not to overshoot level 1.

Keywords: Random; walk; with; negative; drift; Tail; asymptotics; for; the; supremum; Borderline; case; Convergence; of; conditional; laws; Spectrally; positive; Lévy; process; conditioned; not; to; overshoot (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00246-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:2:p:288-313

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:121:y:2011:i:2:p:288-313