Some new almost sure results on the functional increments of the uniform empirical process
Davit Varron
Stochastic Processes and their Applications, 2011, vol. 121, issue 2, 337-356
Abstract:
Given an observation of the uniform empirical process [alpha]n, its functional increments [alpha]n(u+an[dot operator])-[alpha]n(u) can be viewed as a single random process, when u is distributed under the Lebesgue measure. We investigate the almost sure limit behaviour of the multivariate versions of these processes as n-->[infinity] and an[downwards arrow]0. Under mild conditions on an, a convergence in distribution and functional limit laws are established. The proofs rely on a new extension of the usual Poissonisation tools for the local empirical process.
Keywords: Empirical; processes; Functional; limit; theorems (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00264-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:2:p:337-356
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().