EconPapers    
Economics at your fingertips  
 

Ergodic BSDEs under weak dissipative assumptions

Arnaud Debussche, Ying Hu and Gianmario Tessitore

Stochastic Processes and their Applications, 2011, vol. 121, issue 3, 407-426

Abstract: In this paper we study ergodic backward stochastic differential equations (EBSDEs) dropping the strong dissipativity assumption needed in Fuhrman et al. (2009) [12]. In other words we do not need to require the uniform exponential decay of the difference of two solutions of the underlying forward equation, which, on the contrary, is assumed to be non-degenerate. We show the existence of solutions by the use of coupling estimates for a non-degenerate forward stochastic differential equation with bounded measurable nonlinearity. Moreover we prove the uniqueness of "Markovian" solutions by exploiting the recurrence of the same class of forward equations. Applications are then given for the optimal ergodic control of stochastic partial differential equations and to the associated ergodic Hamilton-Jacobi-Bellman equations.

Keywords: Backward; stochastic; differential; equation; Bismut-Elworthy; formula; Coupling; estimate; Ergodic; control; Hamilton-Jacobi-Bellman; equation; Recurrence; property; Weak; dissipative; assumption (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00267-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:3:p:407-426

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:121:y:2011:i:3:p:407-426