Gradient estimate for Ornstein-Uhlenbeck jump processes
Feng-Yu Wang
Stochastic Processes and their Applications, 2011, vol. 121, issue 3, 466-478
Abstract:
By using absolutely continuous lower bounds of the Lévy measure, explicit gradient estimates are derived for the semigroup of the corresponding Lévy process with a linear drift. A derivative formula is presented for the conditional distribution of the process at time t under the condition that the process jumps before t. Finally, by using bounded perturbations of the Lévy measure, the resulting gradient estimates are extended to linear SDEs driven by Lévy-type processes.
Keywords: Lévy; process; Gradient; estimate; Subordination; Compound; Poisson; process (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00287-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:3:p:466-478
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().