EconPapers    
Economics at your fingertips  
 

Fluctuations of the empirical quantiles of independent Brownian motions

Jason Swanson

Stochastic Processes and their Applications, 2011, vol. 121, issue 3, 479-514

Abstract: We consider iid Brownian motions, Bj(t), where Bj(0) has a rapidly decreasing, smooth density function f. The empirical quantiles, or pointwise order statistics, are denoted by Bj:n(t), and we consider a sequence Qn(t)=Bj(n):n(t), where j(n)/n-->[alpha][set membership, variant](0,1). This sequence converges in probability to q(t), the [alpha]-quantile of the law of Bj(t). We first show convergence in law in C[0,[infinity]) of Fn=n1/2(Qn-q). We then investigate properties of the limit process F, including its local covariance structure, and Hölder-continuity and variations of its sample paths. In particular, we find that F has the same local properties as fBm with Hurst parameter H=1/4.

Keywords: Quantile; process; Order; statistics; Fluctuations; weak; convergence; Fractional; Brownian; motion; Quartic; variation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00270-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:3:p:479-514

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:121:y:2011:i:3:p:479-514