Quantitative Breuer-Major theorems
Ivan Nourdin,
Giovanni Peccati and
Mark Podolskij ()
Stochastic Processes and their Applications, 2011, vol. 121, issue 4, 793-812
Abstract:
We consider sequences of random variables of the type , n>=1, where is a d-dimensional Gaussian process and is a measurable function. It is known that, under certain conditions on f and the covariance function r of X, Sn converges in distribution to a normal variable S. In the present paper we derive several explicit upper bounds for quantities of the type , where h is a sufficiently smooth test function. Our methods are based on Malliavin calculus, on interpolation techniques and on the Stein's method for normal approximation. The bounds deduced in our paper depend only on and on simple infinite series involving the components of r. In particular, our results generalize and refine some classic CLTs given by Breuer and Major, Giraitis and Surgailis, and Arcones, concerning the normal approximation of partial sums associated with Gaussian-subordinated time series.
Keywords: Berry-Esseen; bounds; Breuer-Major; central; limit; theorems; Gaussian; processes; Interpolation; Malliavin; calculus; Stein's; method (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00291-7
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Quantitative Breuer-Major Theorems (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:4:p:793-812
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().