EconPapers    
Economics at your fingertips  
 

Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes

Alexey M. Kulik

Stochastic Processes and their Applications, 2011, vol. 121, issue 5, 1044-1075

Abstract: For Lp convergence rates of a time homogeneous Markov process, sufficient conditions are given in terms of an exponential [phi]-coupling. This provides sufficient conditions for Lp convergence rates and related spectral and functional properties (spectral gap and Poincaré inequality) in terms of appropriate combination of 'local mixing' and 'recurrence' conditions on the initial process, typical in the ergodic theory of Markov processes. The range of applications of the approach includes processes that are not time-reversible. In particular, sufficient conditions for the spectral gap property for the Lévy driven Ornstein-Uhlenbeck process are established.

Keywords: Markov; process; Ergodic; rates; Lp; convergence; rates; Exponential; [phi]-coupling; Growth; bound; Spectral; gap; Poincare; inequality; Hitting; times (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00019-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:5:p:1044-1075

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:121:y:2011:i:5:p:1044-1075