Limit theorems in the Fourier transform method for the estimation of multivariate volatility
Emmanuelle Clément and
Arnaud Gloter
Stochastic Processes and their Applications, 2011, vol. 121, issue 5, 1097-1124
Abstract:
In this paper, we prove some limit theorems for the Fourier estimator of multivariate volatility proposed by Malliavin and Mancino (2002, 2009)Â [14] and [15]. In a general framework of discrete time observations we establish the convergence of the estimator and some associated central limit theorems with explicit asymptotic variance. In particular, our results show that this estimator is consistent for synchronous data, but possibly biased for non-synchronous observations. Moreover, from our general central limit theorem, we deduce that the estimator can be efficient in the case of a synchronous regular sampling. In the non-synchronous sampling case, the expression of the asymptotic variance is in general less tractable. We study this case more precisely through the example of an alternate sampling.
Keywords: Non-parametric; estimation; Ito; process; Fourier; transform; Weak; convergence (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00012-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:5:p:1097-1124
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().